带有阻尼项的三维Navier-Stokes方程解的收敛性The Convergence of Solutions for the 3D Navier-Stokes Equation with Damping
江洁,张辉
摘要(Abstract):
带阻尼的Navier-Stokes方程组是描述流体流动规律的一类典型的非线性方程组。从数学结构上来看,当方程组出现阻尼项,其会对解的整体适定性产生调节作用。探讨阻尼项和方程组解之间的各种关系是当前相关领域研究热点。文章探讨了在三维情形下带阻尼项的不可压缩Navier-Stokes方程强解的收敛性问题。通过分析该方程的整体结构和优势,并采用能量估计的方法,描述了当阻尼指标满足2≤β≤4,且阻尼系数α→0时,方程的强解在L~2范数下会一致收敛到Navier-Stokes方程的弱解。
关键词(KeyWords): Navier-Stokes方程;收敛性;能量估计;阻尼
基金项目(Foundation): 安徽省高等学校优秀青年学者科学基金项目(2023AH030073)
作者(Author): 江洁,张辉
DOI: 10.13757/j.cnki.cn34-1328/n.2025.03.005
参考文献(References):
- [1]LERAY J. Sur le mouvement d’un liquide visqueux emplissant l’espace[J]. Acta Mathematica, 1934, 63:193-248.
- [2]HOPF E.??ber die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet[J].Mathematische Nachrichten, 1950, 4(1-6):213-231.
- [3]SERRIN J. On the interior regularity of weak solutions of the Navier-Stokes equations[J]. Archive for Rational Mechanics and Analysis,1962, 9:187-195.
- [4]VEIGA H B. A new regularity class for the Navier-Stokes equations in Rn[J]. Chinese Annals of Mathematics, 1995, 16(4):407-412.
- [5]CONSTANTIN P, FEFFERMAN C. Direction of vorticity and the problem of global regularity for the Navier-Stokes equations[J]. Indiana University Mathematics Journal, 1993, 42(3):775-789.
- [6]BEIRAO DA VEIGA H, BERSELLI L C. On the regularizing effect of the vorticity direction in incompressible viscous flows[J]. Differential and Integral Equations-Athens, 2002, 15(3):345-356.
- [7]ZHANG Z J. An improved regularity criterion for the Navier-Stokes equations in terms of one directional derivative of the velocity field[J].Bulletin of Mathematical Sciences, 2018, 8:33-47.
- [8]CAI X J, JIU Q S. Weak and strong solutions for the incompressible Navier-Stokes equations with damping[J]. Journal of Mathematical Analysis and Applications, 2008, 343(2):799-809.
- [9]ZHOU Y. Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping[J]. Applied Mathematics Letters,2012, 25(11):1822-1825.
- [10]JIAY, ZHANG X, DONG B Q. The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping[J].Nonlinear Analysis:Real World Applications, 2011, 12(3):1736-1747.
- [11]LIU H, GAO H. Decay of solutions for the 3D Navier-Stokes equations with damping[J]. Applied Mathematics Letters, 2017, 68:48-54.
- [12]PENG F, JIN X, YU H. Asymptotic behavior of the 3D incompressible Navier-Stokes equations with damping[J]. Nonlinear Analysis,2024, 244:113543.