分数阶非线性变时滞脉冲微分系统的有限时间稳定性Finite-time Stability of Fractional-order Nonlinear Impulsive Differential System with Time-varying Delay
吴桐,张志信,蒋威
摘要(Abstract):
论文研究了一类具有Caputo导数的分数阶非线性变时滞脉冲微分系统的有限时间稳定性问题,利用系统解的结构和广义的Gronwall不等式给出了具有时变时滞的分数阶非线性脉冲微分系统在有限时间区间上稳定的充分性条件,推广了现有结论,同时给出了具体的数值算例以验证定理条件的有效性。
关键词(KeyWords): 分数阶;有限时间稳定性;Gronwall不等式;非线性;变时滞
基金项目(Foundation): 国家自然科学基金(11371027,11471015,11601003);; 安徽省自然科学基金(1608085MA12);; 高等学校博士点专项科研资助基金(20123401120001)
作者(Author): 吴桐,张志信,蒋威
DOI: 10.13757/j.cnki.cn34-1328/n.2020.01.006
参考文献(References):
- [1] OLDHAM K B, SPANIER J. The fractional calculus[M]. New York:Academic Press, 1974.
- [2] PODLUBNY I. Fractional differential equations[M]. San Diego:Academic Press, 1999.
- [3] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam:Elsevier,2006.
- [4] KAMENKOV G. On stability of motion over a finite interval of time[J]. Journal of Applied Mathematics and Mechanics, 1953, 17:529-540.
- [5] LAZAREVIC M P, SPASIC A M. Finite-time stability analysis of fractional order time-delay systems:Gronwall's approach[J]. Mathematical and Computer Modelling, 2009, 49:475-481.
- [6] ZHANG X Y. Some results of linear fractional order time-delay system[J]. Applied Mathematics and Computation, 2008, 197:407-411.
- [7] WU R C, LU Y F, CHEN L P. Finite-time stability of fractional delayed neural networks[J]. Neurocomputing, 2015, 149:700-707.
- [8] CHEN L P, LIU C, WU R C, et al. Finite-time stability criteria for a class of fractional-order neural networks with delay[J]. Neural Computing and Applications, 2016, 27:549-556.
- [9] MA Y J, WU B W, WANG Y E. Finite-time stability and finite-time boundedness of fractional order linear systems[J]. Neurocomputing,2016, 173:2076-2082.
- [10] LI M M, WANG J R. Finite time stability of fractional delay differential equations[J]. Applied Mathematics Letters, 2017, 64:170-176.
- [11] LI M M, WANG J R. Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations[J]. Applied Mathematics and Computation, 2018, 324:254-265.
- [12] ZHANG Z X, JIANG W. Some results of the degenerate fractional differential system with delay[J]. Computers and Mathematics with Applications, 2011, 62:1284-1291.
- [13] AMATO F, AMBROSINO R, ARIOLA M, et al. Finite-time stability of linear time-varying systems with jumps[J]. Automatica, 2009, 45:1354-1358.
- [14] XU J, SUN J T. Finite-time stability of linear time-varying singular impulsive systems[J]. IET Control Theory and Applications, 2010, 4(10):2239-2244.
- [15] CHEN G P, YANG Y. Robust finite-time stability of fractional order linear time-varying impulsive systems[J]. Circuits Systems and Signal Processing, 2015, 34:1325-1341.
- [16] HEI X D, WU R C. Finite-time stability of impulsive fractional-order systems with time-delay[J]. Applied Mathematical Modelling, 2016,40:4285-4290.
- [17] YE H P, GAO J M, DING Y S. A generalized Gronwall inequality and its application to a fractional differential equation[J]. Journal of Mathematical Analysis and Applications, 2007, 328:1075-1081.
- [18] GUO T L, JIANG W. Impulsive fractional functional differential equations[J]. Computers and Mathematics with Applications, 2012, 64:3414-3424.