具无穷时滞的分数阶泛函微分方程可积解的存在性Existence of Integrable Solutions to Fractional Order Functional Differential Equations with Infinite Delays
勾明志,张海
摘要(Abstract):
本文讨论了一类具有无穷时滞的非线性分数阶泛函微分方程的初值问题,利用Banach不动点定理与Schauder不动点定理分别获得解的存在性条件,并推广了有关文献中的结果。
关键词(KeyWords): 泛函微分方程;分数阶微积分;Banach不动点;Schauder不动点
基金项目(Foundation): 安徽省高校优秀青年拔尖人才支持计划重点项目(gxyq ZD2016205);; 安徽省自然科学基金项目(1608085MA14));; 安徽省教育厅自然科学研究重点项目(KJ2015A152)
作者(Author): 勾明志,张海
DOI: 10.13757/j.cnki.cn34-1328/n.2018.01.004
参考文献(References):
- [1]MILLER K S,ROSS B.An introduction to the fractional calculus and fractional differential equations[M].New York:wileyInterscience Publication,1993:126-174.
- [2]PODLUBNY I.Fractional differential equations[M].Kosice:Technical University of Kosice,1999:159-195.
- [3]KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and applications of fractional differential equations[M].The Kingdom of Netherlands:Elsevier,2006:135-212.
- [4]DIETHELM K.The analysis of fractional differential equations[M].Berlin Heidelberg:Springer-Verlag,2010:85-132.
- [5]BALEANU D,MACHADO J A T,LUO A C J.Fractional dynamics and control[M].New York:Springer-Verlag,2012:109-133.
- [6]张海,郑祖庥,蒋威.非线性分数阶泛函微分方程解的存在性[J].数学物理学报,2011,31A(2):289-297.
- [7]BENCHOHRA M,SOUID M S.Integrable solutions for implicit fractional order functional differential equations with infinite delay[J].Archivum Mathematicum,2015,51(2):67-76.
- [8]张恭庆,林源渠.泛函分析讲义[M].北京:北京大学出版社,2015:4-6.
- [9]LI C P,DENG W H.Remarks on fractional derivatives[J].Applied Mathematics and Computation,2007(187):777-784.
- [10]EL-SAYED A M A.On the fractional differential equation[J].Applied Mathematics and Computation,1992,49(2-3):205-213.
- [11]HALE J,KATO J.Phase space for retarded equations with infinite delay[J].Funkcial Ekvac,1978,21(1):11-41.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享