一类分数阶时滞神经网络的有限时间同步行为分析Finite-time Synchronization Analysis for a Class of Fractional-order Delayed Neural Networks
王爽,张玮玮,张红梅,张海
摘要(Abstract):
分数阶时滞神经网络在信息科学、图像处理等领域具有重要应用,研究分数阶时滞神经网络的有限时间同步问题具有重要意义。首先,利用H?lder不等式提出一个关于上升函数的不等式;其次,利用不等式技巧和线性反馈控制器,得到阶数在1<α<2情形下分数阶时滞神经网络有限时间同步的充分条件;最后,给出数值案例,实验结果证实了所得结果的有效性和可行性。
关键词(KeyWords): 分数阶神经网络;有限时间同步;H?lder不等式;控制器
基金项目(Foundation): 安徽省自然科学基金面上项目(1908085MA01);; 安徽省优秀青年人才项目(gxyq2019048)
作者(Author): 王爽,张玮玮,张红梅,张海
DOI: 10.13757/j.cnki.cn34-1328/n.2021.03.002
参考文献(References):
- [1] CHEN J J, ZENG Z G, JIANG P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks[J]. Neural Networks, 2014, 51:1-8.
- [2] YU J, HU C, JIANG H J, FAN X L. Projective synchronization for fractional neural networks[J]. Neural Networks, 2014, 49:87-95.
- [3] YANG X J, LI C D, HUANG T W, SONG Q K, et al. Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay[J]. Neurocomputing, 2017, 234:205-215.
- [4] YANG X J, SONG Q K, LIU Y R, et al. Finite-time stability analysis of fractional-order neural networks with delay[J]. Neurocomputing,2015, 152:19-26.
- [5] CHEN L P, WU R C, CAO J D, et al. Stability and synchronization of memristor-based fractional-order delayed neural networks[J]. Neural Networks, 2015, 71:37-44.
- [6] VELMURUGAN G, RAKKIYAPPAN R, CAO J D. Finite-time synchronization of fractional-order memristor-based neural networks with time delays[J]. Neural Networks, 2015:1-16.
- [7] ABDURAHMAN A, JIANG H J, TENG Z D. Finite-time synchronization for memristor-based neural networks with time-varying delays[J].Neural Networks, 2015, 69:20-28.
- [8] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and application of fractional differential equations[M]. Elsevier Science, Amsterdam, 2006, 204(49-52):2453-2461.
- [9] GOODRICH C, PETERSON A. Discrete fractional calculus[M]. New York:Springer, 2015.
- [10] ATICI F M, ELOE P W. Discrete fractional calculus with the nabla operator[J]. Electronic Journal of Qualitative Theory of Differential Equations, 2009(3):1-12.
- [11] LI C, DENG W. Remarks on fractional derivatives[J]. Applied Mathematics and Computation, 2007, 187(2):777-784.
- [12] MITRINOVIC D S. Analytic inequalities[M]. New York:Springer, 1970.
- [13] KUCZMA M. An Introduction to the theory of functional equations and inequalities:Cauchy’s equation and Jensen’s inequality[M].Birkh?user Basel, 2009.
- [14] CORDUNEANU C. Principles of differential and intergral equations[M]. New York:Chelsea Pub Co, 1977.