章鱼图和日冕图的识别染色数Identification Coloring Number of Octopus and Coronal Graphs
蔡改香,肖凤茹
摘要(Abstract):
章鱼图和日冕图是两类特殊的单圈图。章鱼图是指将一个圈C_n上某个顶点与一个星图的中心顶点粘合而成的图;日冕图则是将一个圈上的每一个顶点分别与一个星图K_(1, 2)的中心顶点粘合所得到的图。图的识别染色是一种结合了距离与染色的方法,通过为每个顶点分配一个由颜色组成的代码,使得图中任意两个顶点的代码互不相同,从而实现对每个顶点的唯一识别。在该染色方式中,能够保证所有顶点代码唯一的最小颜色数,称为图的识别染色数。文章通过具体构造章鱼图和日冕图的顶点染色方案,研究了它们的识别染色数。
关键词(KeyWords): 章鱼图;日冕图;识别染色;直径
基金项目(Foundation): 安徽省高等学校自然科学研究重点项目(2024AH051088);; 安庆师范大学研究生教育质量工程项目(2022xxsfkc038)
作者(Author): 蔡改香,肖凤茹
DOI: 10.13757/j.cnki.cn34-1328/n.2025.03.004
参考文献(References):
- [1]SLATER P J. Leaves of trees[J]. Congressus Numerantium, 1975, 14:549-559.
- [2]HARARY F, MELTER R A. On the metric dimension of a graph[J]. Ars Combinatoria, 1976, 2:191-195.
- [3]CHARTRAND G, EROH L, JOHNSON M A, et al. Resolvability in graphs and the metric dimension of a graph[J]. Discrete Applied Mathematics, 2000, 105(1-3):99-113.
- [4]CHARTRAND G, ZHANG P. The theory and applications of resolvability in graphs:a survey[J]. Congressus Numerantium, 2003, 160(160):47-68.
- [5]JOHNSON M. Structure-activity maps for visualizing the graph variables arising in drug design[J]. Journal of Biopharmaceutical Statistics,1993, 3(2):203-236.
- [6]JOHNSON M A. Browsable structure-activity datasets[J]. Advances in Molecular Similarity, 1998, 2:153-170.
- [7]FOUCAUD F, MERTZIOS G B, NASERASR R, et al. Identification, location-domination and metric dimension on interval and permutation graphs. I. bounds[J]. Theoretical Computer Science, 2017, 668:43-58.
- [8]FOUCAUD F, MERTZIOS G B, NASERASR R, et al. Identification, location-domination and metric dimension on interval and permutation graphs. II. algorithms and complexity[J]. Algorithmica, 2017, 78(3):914-944.
- [9]HAUPTMANN M, SCHMIED R, VIEHMANN C. Approximation complexity of metric dimension problem[J]. Journal of Discrete Algorithms, 2012, 14:214-222.
- [10]HERNANDO C, MORA M, PELAYO I M, et al. Extremal graph theory for metric dimension and diameter[J]. Electronic Notes in Discrete Mathematics, 2007, 29:339-343.
- [11]ZHANG P. Color-induced graph colorings[M]. New York:Springer, 2015.
- [12]ZHANG P. A kaleidoscopic view of graph colorings[M]. New York:Springer, 2016.
- [13]CHARTRAND G, KONO Y, ZHANG P. Distance vertex identification in graphs[J]. Journal of Interconnection Networks, 2021, 21(1):2150005.
- [14]KONO Y, ZHANG P. Vertex identification in trees[J]. Discrete Mathematics Letters, 2021, 7:66-73.
- [15]KONO Y, ZHANG P. A note on the identification numbers of caterpillars[J]. Discrete Mathematics Letters, 2022, 8:10-15.
- [16]KONO Y, ZHANG P. Vertex identification in grids and prisms[J]. Journal of Interconnection Networks, 2022, 22(2):1-20.
- [17]MARCELO R M, TOLENTINO M A C, GARCIANO A D, et al. On the vertex identification spectra of grids[J]. Journal of Interconnection Networks, 2025, 25(1):2450002.