积分微分方程各向异性有限元的收敛性分析Convergence Analysis for Interracial and Differential Equation with Anisotropic Finite Element
邹会金
摘要(Abstract):
本文研究具有各向异性特征的双二次元对具有积分型边界条件的积分微分方程的逼近问题,通过采用积分恒等式和插值后处理技术,在不需要Ritz-Volterra投影及任何修正格式情况下,利用该单元的特殊性质,在各向异性网格下得到了相应的超逼近和超收敛结果。
关键词(KeyWords): 各向异性网格;积分型边界条件;积分微分方程;收敛性
基金项目(Foundation):
作者(Author): 邹会金
参考文献(References):
- [1]陈传淼,黄云清.有限元方法的高精度理论[M].长沙:湖南科技出版社,1995.
- [2]林群,严宁宁.高效有限元构造与分析[M].保定:河北大学出版社,1996.
- [3]黄明游.发展方程数值计算方法[M].北京:科学出版社,2004.
- [4]Thomee V,Xu J,Zhang N.Superconvergence of the gradient in piecewise linear finite element approxi mation to a parabolic problem[J].SI AMJ.Numer.Anal.,1989(26):553-573.
- [5]Lin Y,Thomee V,Wahlbin L.Ritz-Volterra projection on finite element spaces and applications to integrodifferential and related e-quations[J].SI AMJ.Numer.Anal.1991(28):1 047-1 070.
- [6]Thomee V.galerkin Finite Element Method for Parabolic Problems[M].New York:Springer-Verlag,1997.
- [7]Ciarlet P G.The Finite Element Method for Elliptic Problem[M].North-Holland:msterdam,1978.
- [8]Apel Th,Nicaise S.Crouzeix-raviart type finite elements on anisotropic meshes[J].Numer.Math.,2001(89):193-223.
- [9]Shi D Y,Chen S C,Hagi waya L.Convergence analysis for a nonconforming membrane element on anisotropic meshes[J].J.Comp.Math.,2005,23(4):373-382.
- [10]Chen S C,Shi D Y,Zhao Y C.Anisotropicinterpolation and quasi-wilson element for narrowquadrilateral meshes[J].I MA.J.Num-er.Anal.,2004(24):77-95.
- [11]石东洋,梁慧.一个新的非常规Hermite型各向异性矩形元的超收敛分析及外推[J].计算数学,2005,27(4):369-382.
- [12]李秋红,等.各向异性网格下具有积分性边界条件的积分微分方程的超收敛性分析[J].信阳师范学院学报,2006,19(4):392-395.
- [13]Shi D Y,et al.Anisotropic biquadratic element with superclose result[J].Jrl Syst.Sci.and Complexity,2006,19(4):566-576.