分数阶复值时滞神经网络的准一致同步Quasi-uniform Synchronization of Fractional-order Complex-valued Neural Networks with Time Delay
刘苑醒,张玮玮,张红梅
摘要(Abstract):
对于一类具有时滞的分数阶复值神经网络的准一致同步问题,利用H?lder不等式、Cauchy-Schwartz不等式、Gronwall不等式和一些不等式放缩技巧分别在1/2≤α<1和0<α<1/2的两种情况下,得到保证分数阶复值时滞神经网络的准一致同步的充分条件,数值模拟说明所得结果是正确的和可行的。
关键词(KeyWords): 分数阶复值神经网络;准一致同步;控制器;时滞
基金项目(Foundation): 安徽省自然科学基金(1908085MA01);; 安徽省优秀青年人才基金(gxyq2019048)
作者(Author): 刘苑醒,张玮玮,张红梅
DOI: 10.13757/j.cnki.cn34-1328/n.2020.03.002
参考文献(References):
- [1]HIROSE A.Dynamics of fully complex-valued neural networks[J].Electronics Letters,1992,28(16):1492-1494.
- [2]YANG S,YU J,HU C,JIANG H J.Quasi-projective synchronization of fractional-order complex-valued recurrent neural network[J].Neural Networks,2018,104:104-113.
- [3]CHEN J J,ZENG Z G,JIANG P.Global mittag-leffler stability and synchronization of me-mristor-based fractional-order neural networks[J].Neural Networks,2014,51:1-8.
- [4]WANG L L,CHEN T P.Finite-time and fixed-time anti-synchronization of neural network with time-varying delays[J].Neurocomputing,2019,329:165-171.
- [5]YANG S,YU J,HU C.Adaptively projective synchronization of fractional-order complex-valued neural network[J].Journal of Xinjiang University(Natural Science Edition),2018,35(2):158-164.
- [6]KILBAS A A,.SRIVASTAVA H M,TRUJILLO J J.Theory and application of fractional differential equations[M].Elsevier Science B.V.Amsterdam,2006,204(49-52):2453-2461.
- [7]LI C P,DENG W H.Remarks on fractional derivatives[J].Applied Mathematics and Computation,2007,187(2):777-784.
- [8]MITRINOVIC D,VASIC P M.Analytic inequalities[M].New York:Springer,1970.
- [9]KUCZMA M.An introduction to the theory of function equations and inequalities:Cauchy’s equation and Jensen’s inequality,Birkh?user[M].Berlin:Birkhauser,2009.
- [10]CORDUNEANU C.Principles of differential and intergral equations[M].New York:Chelsea Publishing Company,1977.
- [11]YANG X,LI C,HUANG T,et al.Quasi-uniform synchronization of fractional-order memri-stor-based neural network with delay[J].Neurocomputing,2017,234:205-215.