具有群体性行为的捕食者-食饵系统稳定性分析Stability Analysis of a Predator-Prey System with Group Behavior
李梦婷,周文
摘要(Abstract):
本文研究了具有时滞和平方根功能反应函数的反应扩散捕食者-食饵系统动力学特性。首先研究了系统正平衡点的存在性,其次通过稳定性分析和Hopf分支分析获得了产生Hopf分支的条件,结果说明时滞对系统的Hopf分支存在影响。最后通过数值模拟验证了相关理论,结果发现具有群体性行为的捕食者-食饵系统拥有丰富的动力学行为。
关键词(KeyWords): 捕食者-食饵系统;Hopf分支;稳定性分析;时滞;扩散
基金项目(Foundation): 国家自然科学基金(11671013);; 安徽省自然科学基金(2008085MA13)
作者(Author): 李梦婷,周文
DOI: 10.13757/j.cnki.cn34-1328/n.2023.02.017
参考文献(References):
- [1]周艳,张存华.具有集群行为的捕食者-食饵反应扩散系统的稳定性和Turing不稳定性[J].山东大学学报(理学版), 2021, 56(7):73-81.
- [2] CHATTOPADHYAY J, CHATTERJEE S, VENTURINO E. Patchy agglomeration as a transition from monospecies to recurrent plankton blooms[J]. Journal of Theoretical Biology, 2008, 253(2):289-295.
- [3] MENG X Y, MENG F L. Bifurcation analysis of a special delayed predator-prey model with herd behavior and prey harvesting[J]. AIMS Mathematics, 2021, 6(6):5695-5719.
- [4] YANG W. Analysis on existence of bifurcation solutions for a predator-prey model with herd behavior[J]. Applied Mathematical Modelling,2018(53):433-446.
- [5] XU C, YUAN S. Stability and Hopf bifurcation in a delayed predator-prey system with herd behavior[J]. Abstract and Applied Analysis,2014(3):576-585.
- [6] JIANG H, FANG H, WU Y. Hopf bifurcation in a diffusive predator-prey model with Smith growth rate and herd behavior[J]. Advances in Difference Equations, 2020(1):21-37.
- [7] GAUSE. The struggle for existence[J]. Ecology, 1935, 7(6):609-610.
- [8] PAL D, SANTRA P, MAHAPATRA G S. Predator-prey dynamical behavior and stability analysis with square root functional response[J]. International Journal of Applied&Computational Mathematics, 2017, 3(3):1833-1845.
- [9] LIU X, ZHANG T, MENG X, et al. Turing-Hopf bifurcations in a predator-prey model with herd behavior, quadratic mortality and prey-taxis[J].Statal Mechanics and its Applications, 2018(496):446-460.
- [10] YANG G, ZHANG F. Analysis of effects of delays and diffusion on a predator-prey system[J]. Mathematical Problems in Engineering,2018(8):121-132.
- [11] ZHUANG K, JIA G. The joint effects of diffusion and delay on the stability of a ratio-dependent predator-prey model[J]. Advances in Difference Equations, 2017(1):44-61.
- [12] YE Y, LIU H, WEI Y M, et al. Dynamic study of a predator-prey model with weak Allee effect and delay[J]. Advances in Mathematical Physics, 2019(2):56-65.
- [13] MENG X Y, WANG J G. Dynamical analysis of a delayed diffusive predator-prey model with schooling behaviour and Allee effect[J]. Journal of Biological Dynamics, 2020, 14(1):826-848.
- [14]张道祥,孙光讯,马媛,等.带有Holling-Ⅲ功能反应和线性收获效应的时滞扩散捕食者-食饵系统Hopf分支和空间斑图[J].山东大学学报(理学版), 2018, 53(4):85-94.
- [15] YANG J, YUAN S, ZHANG T. Complex dynamics of a predator-prey system with herd and schooling behavior:with or without delay and diffusion[J]. Nonlinear Dynamics, 2021,(104):1709-1735.