分数阶时滞忆阻神经网络的有限时间投影同步Finite-Time Projective Synchronization of Fractional-Order Memristor-Based Neural Networks with Time Delays
程雨虹,张玮玮,张红梅,张海
摘要(Abstract):
本文研究了分数阶时滞忆阻神经网络的有限时间投影同步问题。首先,引入分数阶时滞忆阻神经网络的模型。其次,设计了一个新型混合控制器,利用Mittag-Leffler函数的Laplace变换和逆变换,以及Gronwall-Bellman不等式,得到了当阶数为1<α <2情况下的分数阶时滞忆阻神经网络有限时间投影同步的充分条件。最后,通过数值模拟,验证了结果的可行性和有效性。
关键词(KeyWords): 分数阶;有限时间投影同步;忆阻器;时滞
基金项目(Foundation): 安徽省自然科学基金(1908085MA01);; 安徽省高校自然科学研究重点项目(KJ2019A0573);; 安徽省高校优秀青年人才支持计划(gxyq2019048)
作者(Author): 程雨虹,张玮玮,张红梅,张海
DOI: 10.13757/j.cnki.cn34-1328/n.2022.03.006
参考文献(References):
- [1] WEN S, ZENG Z, HUANG T. Lag synchronization of switched neural networks via neural activation function and applications in image encryption[J]. IEEE Trans Neural Networks Learn System, 2015, 26(7):1493-1502.
- [2] HOPPENSTEADT F, IZHIKEVICH E. Pattern recognition via synchronization in phase-locked loop neural networks[J]. IEEE Transactions on Neural Networks, 2000, 11(3):734-738.
- [3] MAGIN R, WANG X, LI L L.Fractional calculus models of complex dynamics in biological tissues[J]. Computer&Mathematics with Applications, 2010, 59:1585-1593.
- [4] WANG X, LI L L, LI D C, et al. Exponential synchronizationlike criterion for state-dependent impulsive dynamical networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 30:1025-1033.
- [5] PICOZZI S, WEST B J. Fractional Langevin model of memory in financial markets[J]. Physical Review E, 2001, 66:046118.
- [6] ADOLFSSON K, ENELUND B, OLSSON P. On the fractional order model of viscoelasticity[J]. Mechanics of Time-Dependent Materials2005, 9:15-34.
- [7] KASLIK E, SIVASUNDARAM S. Nonlinear dynamics and chaos in fractional-order neural networks[J]. Neural Networks, 2012, 32:245-256.
- [8] ZHANG W W, ZHANG H, CAO J D, et al. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays[J]. Neural Networks, 2019, 110:186-198.
- [9] ZHANG W W, ZHANG H, CAO J D, et al. Synchronization of delayed fractional-order complex-valued neural networks with leakage delay[J]. Physica A:Statistical Mechanics and Its Applications, 2020, 556:124710.
- [10] ZHANG H, YE R Y, CAO J D, et al. Delay-independent stability of Riemann-Liouville fractional neutral-type delayed neural networks[J].Neural Processing Letters, 2018, 47:427-442.
- [11] ZHANG H, YE R Y, LIU S, et al. LMI-based approach to stability analysis for fractional-order neural networks with discrete and distributed delays[J]. International Journal of Systems Science, 2017, 49:537-545.
- [12] ZHANG H, Ye M L, Ye R Y, et al. Synchronization stability of Riemann-Liouville fractional delay-coupled complex neural networks[J].Physica A:Statistical Mechanics and Its Applications, 2018, 508:155-165.
- [13] ZHANG H, YE M L, CAO J D. Synchronization control of Riemann-Liouville fractional competitive network systems with time-varying delay and different time scales[J]. International Journal of Control Automation and Systems, 2018, 16:1404-1414.
- [14] ZHANG W W, ZHANG H, CAO J D, et al. Global projective synchronization in fractional order quaternion valued neural networks[J].Asian Journal of Control, 2022, 24(1):227-236.
- [15] ZHANG H, YE R Y, CAO J D, et al. Lyapunov functional approach to stability analysis of Riemann-Liouville fractional neural networks with time-varying delays[J]. Asian Journal of Control, 2018, 20:1938-1953.
- [16] ZHANG W W, ZHANG H, CAO J D, et al. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays[J]. Neural Networks, 2019, 110:186-198.
- [17] ZHANG W W, ZHANG H, CAO J D, et al. Synchronization of delayed fractional-order complex-valued neural networks with leakage delay[J]. Physica A:Statistical Mechanics and Its Applications, 2020, 556:124710.
- [18] LIAO M, XU C, TANG X. Stability and Hopf bifurcation for a competition and cooperation model of two enterprises with delay[J]. Communications in Nonlinear Science&Numerical Simulation, 2014, 19:3845-3846.
- [19] WANG H, LI CD, XU HB. Global robust stability analysis for neural networks with constant or variable delays[J]. Modern Physics Letters B, 2010, 24:335-355.
- [20] ZHU H, RAKKIYAPPAN R, LI X. Delayed state-feedback control for stabilization of neural networks with leakage delay[J]. Neural Networks, 2018, 105:249-255.
- [21] NEYIR O. New conditions for global stability of neutral-type delayed Cohen-Grossberg neural networks[J]. Neural Networks, 2018, 106:1-7.
- [22] KWON O M, PARK M J, PARK J H, et al. Stability and stabilization for discrete-time systems with time-varying delays via augmented Lyapunov-Krasovskii functional[J]. Journal of the Franklin Institute, 2013, 350:521-540.
- [23] SYED A M, BALASUBRAMANIAM P. Global asymptotic stability of stochastic fuzzy cellular neural networks with multiple discrete and distributed time-varying delays[J]. Communicationin Nonlinear Science and Numerical Simulation, 2011, 16:2907-2916.
- [24] WEI X F, ZHANG Z Y, LIU M J. Anti-synchronization for complex-valued neural networks with leakage-delay and time-varying delays[J].Neurocomputing, 2020, 412:312-319.
- [25] WANG W, LI L, PENG H. Anti-synchronization of coupled memristive neutral-type neural networks with mixed time-varying delays via randomly occurring control[J]. Nonlinear Dynamic, 2016, 83:2143-2155.
- [26] FERRARI F A, VIANA R L, LOPES S R, et al. Phase synchronization of coupled bursting neurons and the generalized Kuramoto model[J].Neural Networks, 2015, 66:107-118.
- [27] BAO H B, CAO J D. Projective synchronization of fractional-order memristor-based neural networks[J]. Neural Networks, 2015, 63:1-9.
- [28] YANG X J, LI C D, HUANG T W. Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay[J]. Neurocomputing, 2017, 234:205-215.
- [29] YU J, HUA C, JIANG H J, et al. Projective synchronization for fractional neural networks[J]. Neural Networks, 2014, 49:87-95.
- [30] ZHANG W W, CAO J D, WU R C, et al. Novel results on projective synchronization of fractional-order neural networks with multiple time delays[J]. Chaos, Solitons and Fractals, 2018, 117:76-83.
- [31] ZHANG L Z, YANG Y Q, WANG F. Projective synchronization of fractional-order memistive neural networks with switching jumps mismatch[J]. Physica A, 2017, 471:402-415.
- [32] PODLUBNY I. Fractional differential equations[M]. San Diego:Academic Press, 1999.
- [33] VELMURUGAN G, RAKKIYAPPAN R, CAO J D. Finite-time synchronization of fractional-order memristor-based neural networks with time delays[J]. Neural Networks, 2015, 73:36-46.
- [34] ZHANG Y L, DENG S F. Finite-time projective synchronization of fractional-order complex-valued memristor-based neural networks with delay[J]. Chaos, Solitons&Fractals, 2019, 128:176-190.
- [35] BARBU V. Principles of differential and intergral equations[J]. Journal of the Franklin Institute, 1974, 298:246-247.