时滞不确定差分方程的指数稳定性Exponential Stability of Uncertain Difference Equations with Time-Delays
李雅,卢琴云
摘要(Abstract):
在现实世界的系统建模中,不确定性是一个不可忽视的因素。不确定差分方程作为描述离散不确定系统的有效工具,被广泛应用于控制系统建模中。时滞现象也广泛存在于实际系统中,其往往是导致系统性能下降甚至失稳的关键因素。文章针对一类带有时滞的不确定差分方程,提出了其p阶矩指数稳定性的定义,并基于Lyapunov直接法和Halanay不等式,建立了相应的稳定性判别准则。为了进一步提升理论结果的实用性,文章结合方程的α-路以及不确定变量的广义期望,对稳定性条件进行了简化处理。最后,通过数值仿真验证了所提方法的有效性,为时滞不确定系统的稳定性分析提供了一种新的理论支持。
关键词(KeyWords): 不确定差分方程;指数稳定性;Lyapunov直接法;时滞
基金项目(Foundation): 安徽省高校科研计划项目(2023AH050513,2023AH050478)
作者(Author): 李雅,卢琴云
DOI: 10.13757/j.cnki.cn34-1328/n.2025.03.002
参考文献(References):
- [1]LIU B D. Uncertainty theory[M]. 2nd ed. Berlin:Springer-Verlag, 2007.
- [2]王志刚,曹楚昕,吕钰儿,等.应急海运路径的不确定规划模型[J].模糊系统与数学, 2023, 37(6):158-164.
- [3]王小胜,刘畅,李伟,等.不确定环境下基于最优最劣模型的指标权重确定方法[J].模糊系统与数学, 2022, 36(2):78-89.
- [4]GONG Z W, WANG H, GUO W W, et al. Measuring trust in social networks based on linear uncertainty theory[J]. Information Sciences,2020, 508:154-172.
- [5]LIU B D. Some research problems in uncertainty theory[J]. Journal of Uncertain Systems, 2009, 3(1):3-10.
- [6]YAO K, GAO J W, GAO Y. Some stability theorems of uncertain differential equation[J]. Fuzzy Optimization and Decision Making, 2013,12(1):3-13.
- [7]LIU H J, KE H, FEI W Y. Almost sure stability for uncertain differential equation[J]. Fuzzy Optimization and Decision Making, 2014, 13(4):463-473.
- [8]SHENG Y H, WANG C G. Stability in p-th moment for uncertain differential equation[J]. Journal of Intelligent&Fuzzy Systems, 2014, 26(3):1263-1271.
- [9]YAO K, KE H, SHENG Y H. Stability in mean for uncertain differential equation[J]. Fuzzy Optimization and Decision Making, 2015, 14(3):365-379.
- [10]TOMASIELLO S, MEJIA M S, GOSSILI N. Finite-time stability for uncertain differential equations:a first investigation on a new class of multi-agent systems[J]. Soft Computing, 2020, 24(5):3275-3284.
- [11]GAO Y, JIA L F. Stability in measure for uncertain delay differential equations based on new Lipschitz conditions[J]. Journal of Intelligent&Fuzzy Systems, 2021, 41(2):2997-3009.
- [12]WANG X. Almost sure and p-th moment stability of uncertain differential equations with time-varying delay[J]. Engineering Optimization,2022, 54(2):185-199.
- [13]GAO Y, JIA L F. Stability in mean for uncertain delay differential equations based on new Lipschitz conditions[J]. Applied Mathematics and Computation, 2021, 399:126050.
- [14]JIA L F, SHENG Y H. Stability in distribution for uncertain delay differential equation[J]. Applied Mathematics and Computation, 2019,343:49-56.
- [15]HUANG Z Y, ZHU C L, GAO J W. Stability analysis for uncertain differential equation by Lyapunov’s second method[J]. Fuzzy Optimization and Decision Making, 2020, 20(1):1-16.
- [16]SHU Y D, JIN T. Stability in measure and asymptotic stability of uncertain nonlinear switched systems with a practical application[J].International Journal of Control, 2023, 96(11):2917-2927.
- [17]CHEN X M, NING Y F. The p-th moment exponential stability of uncertain differential equation[J]. Journal of Intelligent&Fuzzy Systems,2017, 33(2):725-732.
- [18]LU Z Q, ZHU Y G. Asymptotic stability in p-th moment of uncertain dynamical systems with time-delays[J]. Mathematics and Computers in Simulation, 2023, 212:323-335.
- [19]LI Z, WEN X Q, XU L P. Exponential stability of uncertain functional differential equations[J]. Applied Soft Computing, 2023, 147:110816.
- [20]LU Q Y, ZHU Y G. Comparison theorems and distributions of solutions to uncertain fractional difference equations[J]. Journal of Computational and Applied Mathematics, 2020, 376:112884.
- [21]SONG Y F, SHEN Y, YIN Q. New discrete Halanay-type inequalities and applications[J]. Applied Mathematics Letters, 2013, 26(2):258-263.