一类具有混合时滞的分数阶神经网络的有限时间同步分析Finite-time Synchronization Analysis for a Class of Fractional-order Neural Networks with Mixed Delays
程景顺,张玮玮,张红梅,张海
摘要(Abstract):
针对具有混合时滞的分数阶神经网络的有限时间同步问题,基于Gronwall不等式、不等式放缩技巧以及一些分数阶微积分的分析技巧,推导得到混合时滞的分数阶神经网络的有限时间同步的充分判据,并通过数值模拟实验验证了所得结果的正确性和可行性。
关键词(KeyWords): 分数阶神经网络;有限时间同步;混合时滞
基金项目(Foundation): 安徽省自然科学基金(1908085MA01);; 安徽省高等学校自然科学研究重点项目(2018A0365);; 安徽省高校优秀青年人才支持计划项目(gxyq2019048)
作者(Author): 程景顺,张玮玮,张红梅,张海
DOI: 10.13757/j.cnki.cn34-1328/n.2022.01.018
参考文献(References):
- [1] LI L L, WANG X, LI C D, et al. Exponential synchronizationlike criterion for state-dependent impulsive dynamical networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30:1025-1033.
- [2] MAGIN R L. Fractional calculus models of complex dynamics in biological tissues[J]. Computers and Mathematics with Applications,2010, 59:1586-1593.
- [3] PICOZZI S, WEST S J. Fractional langevin model of memory in financial markets[J]. Physical Review, 2002, 66:046118.
- [4] ADOLFSSON K, ENELUND M, OLSSON P. On the fractional order model of viscoelasticity[J]. Mechanics of Time-Dependent Materials,2005, 9:15-34.
- [5] LUNDSTROM B N, HIGGS M H, SPAIN W J, et al. Fractional differentiation by neocortical pyramidal neurons[J]. Nature Neuroscience,2008, 11:1335-1342.
- [6] ANASTASSIOU G. Fractional neural network approximation[J]. Computer and Mathematics with Applications, 2012, 64:1655-1676.
- [7] MUTHUKUMAR P, BALASUBRAMANIAM P. Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography[J]. Nonlinear Dynamics, 2013, 74:1169-1181.
- [8] ALIMI A M, AOUITI C, ASSALI E A. Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication[J]. Neurocomputing, 2019, 332:29-43.
- [9] WEN S P, ZENG Z G, HUANG T W, et al. Lag synchronization of switched neural networks via neural activation function and applications in image encryption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 7:1493-1502.
- [10] YANG X J, LI C D, HUANG T W, et al. Quasi-uniform synchronization of fractional-order memristor-based neural networks with delay[J].Neurocomputing, 2017, 234:205-215.
- [11] YANG S, YU Y G, HU C, et al. Quasi-projective synchronization of fractional-order complex-valued recurrent neural networks[J]. Neural Networks, 2018, 104:104-113.
- [12] CHEN L P, WU R C, CAO J D, et al. Stability and synchronization of memristor-based fractional-order delayed neural networks[J]. Neural Networks, 2015, 71:37-44.
- [13] CHEN J, ZENG Z, JIANG P. Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks[J].Neural Networks, 2014, 51:1-8.
- [14] YANG X J, LI C D, HUANG T W, et al. Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays[J]. Chaos, Solitons and Fractals, 2018, 110:105-123.
- [15] CHEN C, LI L X, PENG H P, et al. Fixed-time synchronization of inertial memristor-based neural networks with discrete delay[J]. Neural Networks, 2019, 109:81-89.
- [16] ZHANG W W, ZHANG H, CAO J D, et al. Synchronization of delayed fractional-order complex-valued neural networks with leakage delay[J]. Physica A, 2020, 556:124710.
- [17] WU G C, BALEANU D, ZENG S D. Finite-time stability of discrete fractional delay systems:Gronwall inequality and stability criterion[J]. Communications in Nonlinear Science and Numerical Simulation, 2018, 57:299-308.
- [18] WU H Q, ZHANG X X, XUE S H, et al. Quasi-uniform stability of Caputo-type fractional-order neural networks with mixed delay[J]. International Journal of Machine Learning and Cybernetics, 2016, 8:1501-1511.
- [19] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and application of fractional differential equations[M]. Elsevier Science B.V.Amsterdam, 2006.
- [20] DU F F, LU J G. New criterion for finite-time synchronization of fractional order memristor-based neural networks with time delay[J]. Appplied Mathematics and Computation, 2021, 389:125616.