Caputo型多时滞F-OFQVNNs的全局Mittag-Leffler投影同步Global Mittag-Leffler Projective Synchronization of Caputo Type F-OFQVNNs with Multiple Delays
魏玉秀,吴琼
摘要(Abstract):
本文研究了具有离散和无限分布时滞Caputo型分数阶模糊四元数值神经网络(F-OFQVNNs)的全局Mittag-Leffler投影同步(G-MLPS)问题。首先,引入新的F-OFQVNNs模型;其次,设计新的自适应混合控制器,并采用Lyapunov直接法和不等式放缩技巧,得到了在新控制器下F-OFQVNNs达到G-MLPS的充分判据;最后,通过对实例进行数值模拟验证了所得结果的有效性。
关键词(KeyWords): F-OFQVNNs;多时滞;全局Mittag-Leffler投影同步;自适应混合控制
基金项目(Foundation):
作者(Author): 魏玉秀,吴琼
DOI: 10.13757/j.cnki.cn34-1328/n.2023.03.002
参考文献(References):
- [1] WU G C, BALEANU D, ZENG S D. Finite-time stability of discrete fractional delay systems:Gronwall inequality and stability criterion[J].Communications in Nonlinear Science and Numerical Simulation, 2018, 57:299-308.
- [2] ZHANG W W, SHA C L, CAO J D, et al. Adaptive quaternion projective synchronization of fractional order delayed neural networks in quaternion field[J]. Applied Mathematics and Computation, 2021, 400:126045.
- [3] YAN H Y, QIAO Y H, DUAN L J, et al. New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays[J]. Chaos, Solitons&Fractals, 2022, 159:112121.
- [4] SONG Q, CAO J D. Synchronization of nonidentical chaotic neural networks with leakage delay and mixed time-varying delays[J]. Advances in Difference Equations, 2011, 1:1-17.
- [5] WEI X F, ZHANG Z Y, LIU M J, et al. Anti-synchronization for complex-valued neural networks with leakage delay and time-varying delays[J].Neurocomputing, 2020, 412:312-319.
- [6] TU Z W, ZHAO Y G, DING N, et al. Stability analysis of quaternion-valued neural networks with both discrete and distributed delays[J].Applied Mathematics and Computation, 2019, 343:342-353.
- [7] CHEN J Y, LI C D, YANG X J. Global Mittag-Leffler projective synchronization of nonidentical fractional-order neural networks with delay via sliding mode control[J]. Neurocomputing, 2018, 313:324-332.
- [8] BAO H B, PARK J H, CAO J D. Adaptive synchronization of fractional-order output-coupling neural networks via quantized output control[J].IEEE Transactions on Neural Networks and Learning Systems, 2021, 32:3230-3239.
- [9] FANG M, PARK J H. Non-fragile synchronization of neural networks with time-varying delay and randomly occurring controller gain fluctuation[J]. Applied Mathematics and Computation, 2013, 219(15):8009-8017.
- [10] ZHANG L J, ZHONG J, LU J Q. Intermittent control for finite-time synchronization of fractional-order complex networks[J]. Neural Networks,2021, 144:11-20.
- [11] KILBAS AA, SRIVASTAVA H M, TRUJILLO J J. Theory and application of fractional differential equations[M]. Elsevier Science, Amsterdam, 2006, 204(49-52):2453-2461.
- [12] LI H L, JIANG H J, CAO J D. Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete delays[J].Neurocomputing, 2020, 385:211-219.
- [13] YU J, HU C, JIANG H J. Corrigendum to“Projective synchronization for fractional neural networks”[J]. Neural Networks, 2015, 67:152-154.
- [14] ZHENG B B, WANG Z S. Adaptive synchronization of fractional-order complex-valued coupled neural networks via direct error method[J].Neurocomputing, 2022, 486:114-122.
- [15] LI H L, ZHANG L, HU C, et al. Global Mittag-Leffler synchronization of fractional-order delayed quaternion valued neural networks:direct quaternion approach[J]. Applied Mathematics and Computation, 2020, 373:125020.
- [16] WU A, ZENG Z G, SONG X G. Global Mittag-Leffler stabilization of fractional-order bidirectional associative memory neural networks[J].Neurocomputing, 2016, 177:489-496.
- [17] YU J, HU C, JIANG H J, et al. Projective synchronization for fractional neural networks[J]. Neural Networks, 2014, 49:87-95.
- [18] LIU S, YANG R, ZHOU X F, et al. Stability analysis of fractional delayed equations and its applications on consensus of multi-agent systems[J].Communications in Nonlinear Science and Numerical Simulation, 2019, 73:351-362.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享