具有时变时滞的四元数值模糊神经网络指数同步分析Exponential Synchronization Analysis of Quaternion-Valued Fuzzy Neural Networks with Time-Vary Delays
徐杨,殷周平
摘要(Abstract):
文章利用代数不等式技巧、线性控制方法以及李雅普诺夫函数直接法研究带有时变时滞的四元数值模糊神经网络的指数同步问题,推导出了该类神经网络的指数同步准则,并在改变原有条件的基础上得到了相应的推论。同时,文章在同步过程中还充分考虑了时滞和扰动对实际问题所产生的影响,因此其在原有模糊神经网络模型基础上增加了时滞项和扰动项,使得模型更加贴近实际情况,最后通过数值模拟验证了理论结果的正确性。
关键词(KeyWords): 时变时滞;四元数值;模糊神经网络;指数同步
基金项目(Foundation): 安徽省高等学校自然科学研究项目(2023AH050478)
作者(Author): 徐杨,殷周平
DOI: 10.13757/j.cnki.cn34-1328/n.2025.01.003
参考文献(References):
- [1] SHI J J, CHEN S H, CHEN T, et al. Image encryption with quantum cellular neural network[J]. Quantum Information Processing, 2022, 21:214.
- [2] MAN Z L, LI J Q, DI X Q, et al. Double image encryption algorithm based on neural network and chaos[J]. Chaos, Solitons and Fractals,2021, 152:111318.
- [3] HU X F, FENG G, DUAN S K, et al. Multilayer RTD-memristor-based cellular neural networks for color image processing[J]. Neurocomputing, 2015, 162:150-162.
- [4] JOHN F L, DOGRA D. Application research of network learning algorithm based on neural network disturbance compensation in satellite attitude control[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14:16513-16520.
- [5] ZHANG W W, ZHANG H, CAO J D, et al. Synchronization in uncertain fractional-order memristive complex-valued neural networks with multiple time delays[J]. Neural Networks, 2019, 110:186-198.
- [6] MOHAMMADZADEH A, GHAEMI S. Synchronization of uncertain fractional-order hyperchaotic systems by using a new self-evolving non-singleton type-2 fuzzy neural network and its application to secure communication[J]. Nonlinear Dynamics, 2017, 88:1-19.
- [7] ZHAO F, JIAN J G, WANG B X. Finite-time synchronization of fractional-order delayed memristive fuzzy neural networks[J]. Fuzzy Sets and Systems, 2023, 467:108578.
- [8] LI R X, CAO J D, LI N. Quasi-synchronization control of quaternion-valued fuzzy memristive neural networks[J]. Fuzzy Sets and Systems,2023, 472:108701.
- [9] LI J, LI H L, YANG J P, et al. Hybrid control-based synchronization of fractional-order delayed complex-valued fuzzy neural networks[J].Computational and Applied Mathematics, 2023, 42:154.
- [10] TU Z W, JIAN J J, WANG K. Global exponential stability in lagrange sense for recurrent neural networks with both time-varying delays and general activation functions via LMI approach[J]. Nonlinear Analysis:Real World Applications, 2021, 12:2174-2182.
- [11] YANG Z Y, ZHANG J, ZHANG Z H, et al. An improved criterion on finite-time stability for fractional-order fuzzy cellular neural networks involving leakage and discrete delays[J]. Mathematics and Computers in Simulation, 2023, 203:910-925.
- [12] ZHANG H, CHENG Y H, ZHANG W W, et al. Time-dependent and Caputo derivative order-dependent quasi-uniform synchronization on fuzzy neural networks with proportional and distributed delays[J]. Mathematics and Computers in Simulation, 2023, 203:846-857.
- [13] BALUNI S, YADAV V K, DAS S. Quasi projective synchronization of time varying delayed complex valued Cohen-Grossberg neural networks[J]. Information Sciences, 2022, 612:231-240.
- [14] IVANKN S. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays[J].Nonlinear Dynamics, 2014, 77:1251-1260.
- [15] LI H L, HU C, CAO J D, et al. Quasi-projective and complete synchronization of fractional-order complex-valued neural networks with time delays[J]. Neural Networks, 2019, 118:102-109.
- [16] WANG X, CAO J D, YANG B, et al. Fast fixed-time synchronization control analysis for a class of coupled delayed Cohen-Grossberg neural networks[J]. Journal of the Franklin Institute, 2022, 359:1612-1639.
- [17] LI H L, HU C, ZHANG L, et al. Complete and finite-time synchronization of fractional-order fuzzy neural networks via nonlinear feedback control[J]. Fuzzy Sets and Systems, 2022, 443:50-69.
- [18] LI X M, LIU X G, WANG F X. Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and timevarying delays[J]. Chaos, Solitons and Fractals, 2023, 174:113754.
- [19] ZHENG B B, WANG Z S. Mittag-Leffler synchronization of fractional-order coupled neural networks with mixed delays[J]. Applied Mathematics and Computation, 2022, 430:127303.
- [20] WU X, LIU S T, WANG H Y. Asymptotic stability and synchronization of fractional delayed memristive neural networks with algebraic constraints[J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 114:106694.
- [21] DUAN L, FANG X W, FU Y J. Global exponential synchronization of delayed fuzzy cellular neural networks with discontinuous activations[J]. International Journal of Machine Learning and Cybernetics, 2019, 10:579-589.
- [22] CHENG Y Z, SHI Y C. The exponential synchronization and asymptotic synchronization of quaternion-valued memristor-based CohenGrossberg neural networks with time-varying delays[J]. Neural Processing Letters, 2023, 55:6637-6656.
- [23] YANG X S, CAO J D, YU W W. Exponential synchronization of memristive Cohen-Grossberg neural networks with mixed delays[J]. Cognitive Neurodynamics, 2014, 8:239-249.
- [24] TU Z W, CAO J D, ALSAEDI A, et al. Global dissipativity analysis for delayed quaternion-valued neural networks[J]. Neural Networks,2017, 89:97-104.
- [25] LI R X, GAO X B, CAO J D, et al. Exponential stabilization control of delayed quaternion-valued memristive neural networks:vector ordering approach[J]. Circuits, Systems, and Signal Processing, 2020, 39:1353-1371.