带有阻尼项的三维微极流方程组的整体适定性Global Well-Posedness of the 3D Micropolar Fluid Equations with Damping
祖倩,马宗立
摘要(Abstract):
本文研究了在三维情形下带有阻尼项的不可压微极流方程组的整体适定性问题。在某些特定条件下,微极流方程组可以退化成经典的Navier-Stokes方程组,因此考虑将Navier-Stokes方程组的相关成果推广到微极流方程组。由于微极流方程组在速度场基础上考虑了微旋转速度场,其结构更加复杂。本文通过对微极流方程组的非线性结构细致分析和能量估计,得到了当■时方程组存在唯一的整体解。
关键词(KeyWords): 微极流方程组;整体适定性;能量估计;阻尼
基金项目(Foundation): 2021年稳定博士科研启动费(213001)
作者(Author): 祖倩,马宗立
DOI: 10.13757/j.cnki.cn34-1328/n.2024.02.003
参考文献(References):
- [1] ERINGEN A. Theory of micropolar fluids[J]. Journal of Mathematical Fluid Mechanics, 1966, 16:1-18.
- [2] DONG B Q, WU J H, XU X J, et al. Global regularity for the 2D micropolar equations with fractional dissipation[J]. Discrete and Continuous Dynamical Systems, 2018, 38(8):4133-4162.
- [3] DONG B Q, LI J N, WU J H. Global well-posedness and large-time decay for the 2D micropolar equations[J]. Journal of Differential Equations, 2017, 262(6):3488-3523.
- [4] LIU S Q, SI Z J. Global well-posedness of the 3D micropolar equations with partial viscosity and damping[J]. Applied Mathematics Letters,2020, 109:106543.
- [5] YE H L, WANG Q Q, JIA Y. Well-posedness and large time decay for the 3D micropolar equations with only velocity dissipation[J]. Nonlinear Analysis, 2022, 219:112796.
- [6] JIA Y, WANG W J, DONG B Q. Global well-posedness of the 2D micropolar fluid flows with mixed dissipation[J]. Electronic Journal of Differential Equations, 2016, 2016(154):1-10.
- [7] CAI X J, JIU Q S. Weak and strong solutions for the incompressible Navier-Stokes equations with damping[J]. Journal of Mathematical Analysis, 2008, 343:799-809.
- [8] YE Z. Global existence of strong solution to the 3D micropolar equations with a damping term[J]. Applied Mathematics Letters, 2018, 83:188-193.
- [9] DENG L H, SHANG H F. Global well-posedness for n-dimensional megneto-micropolar equations with hyperdissipation[J]. Applied Mathematics Letters, 2021, 111:106610.
- [10] LIU H, LIN L, SUN C F. Well-posedness of the generalized Navier-Stokes equations with damping[J]. Applied Mathematics Letters, 2021,121:107471.
- [11] LIU H, SUN C F, Meng F W. Global well-posedness of the 3D magneto-micropolar equations with damping[J]. Applied Mathematics Letters, 2019, 94:38-43.
- [12] ZHOU Y. Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping[J]. Applied Mathematics Letters,2012, 25:1822-1825.
- [13] CONSTANTIN P, FOIAS C. Navier-Stokes Equations[M]. Chicago:University of Chicago Press, 1988.